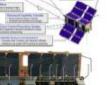

Emerge of Micro/nano/pico-satellites (< 100kg)

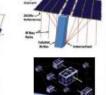
Part 2

Shinichi Nakasuka University of Tokyo

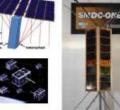
Satellites become too big and expensive !!

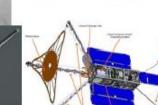
Emerge of Micro/nano/pico-satellites (<100kg)



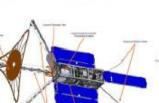


OPUSAT(1U:1kg) XI-IV(1U:1kg)


AeroCube(1.5U:2kg) Dove,Flock(3U:4kg)

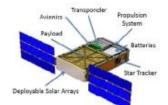


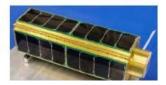
Rendezvous/ Communication docking 高速通信·ISARA(3U) 低速通信·AISSAT-1(6kg) INSPIRE(3U)

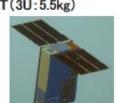


AAReST

Space Science

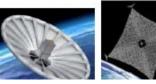

RACE(3U)

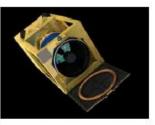

FS-7(3U)



Weather MiRaTA(3U) MicroMAS(3U)

Bio-engineering BioSentinel計画案(6U) SPORESAT(3U:5.5kg)




Exploration LWaDi(6U)

CAT(3U)

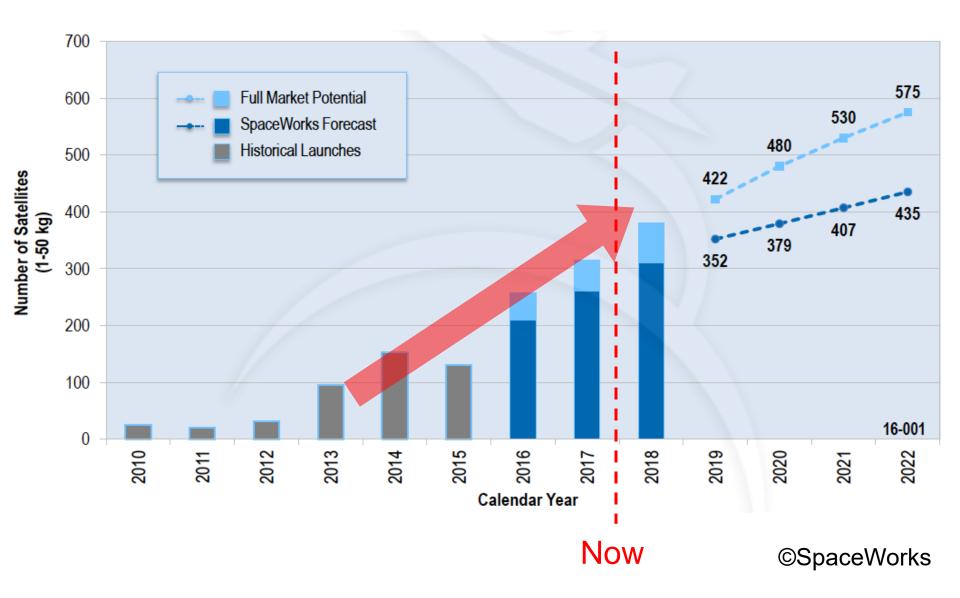
Re-entry 再突入回収(3U) Sunjammer

High Resolution.

SCOUT(50kg) Skysat(120kg)

Active players: University and venture companies Can also be developed by emerging countries, local governments, etc.

Atmosphere

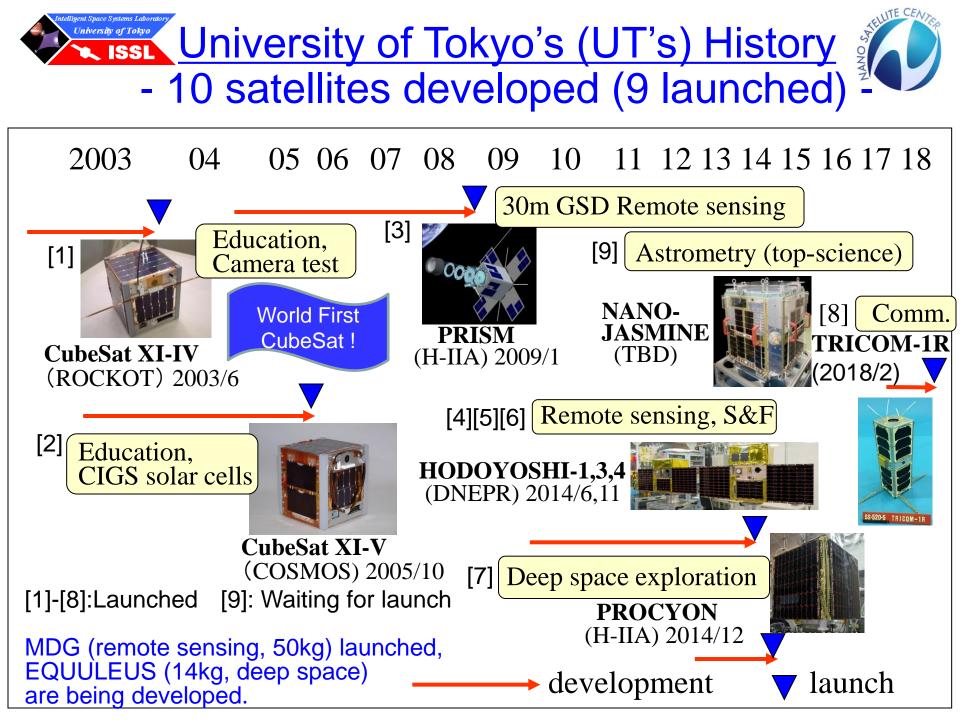

(可視·近赤外)

NEMO-AM(15kg)

"Game Change" by Lean Satellites

- <u>Very low cost</u> (>200M \Rightarrow <5M \Rightarrow)
 - Leads to new missions, business, space sciences...
 - Introduce new users (companies, new countries..)
 - Can be used as educational tools
 - Can be very challenging (failures can be allowed)
- Short life cycle (>5 years \rightarrow <1-2 years)
 - One life cycle possible during univ.'s student years
 - More iterations possible (from "project" to "program")
 - Early return of investment (good for business)
- <u>Simple and transparent satellite system</u>
 - Easy to design, operate and do trouble shooting
 - Development members can see the total system

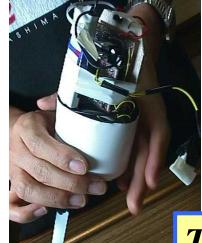
Growing trend of < 50kg satellites


Emerge of Nano/pico-Satellites in Japan

World First CubeSats launch by Univ.Tokyo and Titech (2003.6.30)

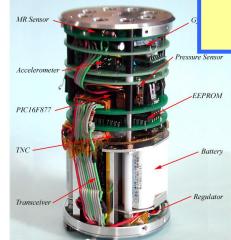
- University level budget (30K\$)
- Development within 2 years
- Surviving in space for 15 years
- Ground operations, frequency acquisitions, launch opportunity search processed by ourselves

1~50kg (Micro/Nano-sat): Starting from education but higher level satellites appear



University of Tokyo's History on Micro/nano/pico-satellites (2000 – 2009)

- Starting from Education and Experiments -

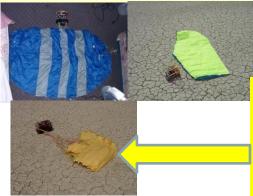


Training step: CanSat 1999-now

ARLISS (A Rocket Launch for International Student Satellites)

- Annual suborbital launch experiment -
- ARLISS 1999: Sept. 11 (Japan:2, USA:2)
 - Univ.of Tokyo, Titech, Arizona State, etc.
- ARLISS 2000: July 28-29 (Japan:4, USA:3)
- ARLISS 2001: August 24-25 (Japan:5, USA:2)
- ARLISS 2002: August 2-3 (Japan:6, USA:3)
- ARLISS 2003: Sept.26-27 (Japan:6, USA:3)
- ARLISS 2004: Sept.24-25 (Japan:6, USA:3)
- ARLISS 2005: Sept.21-23 (Japan:7, USA:3)
- ARLISS 2006 Sept.20-22 (Japan:8 USA:3 Europe:1)
- ARLISS 2007 Sept.12-15 (Japan:10 USA:3 Korea:1)
- ARLISS 2008 Sept.15-20: 10th Memorial ARLISS !
- ARLISS 2016 18th (Japan:12, USA:2, Korea, Egypt)
- ARLISS 2017 19th Sept.13-17 (Japan:13 USA:2 Kore
- ARLISS 2018 20th Memorial !!

Opening Ceremony and Briefing (September 10, 2018)



Come-Back Competition 2002

Participating Universities 2002

Univ. of Tokyo

Kyushu Univ.

45m to the target (World Record of Flyback Type) te

Nihon Univ.

Tohoku Univ.

of Technology

Stanford Univ.

Comeback Competition

time att the constant of the off

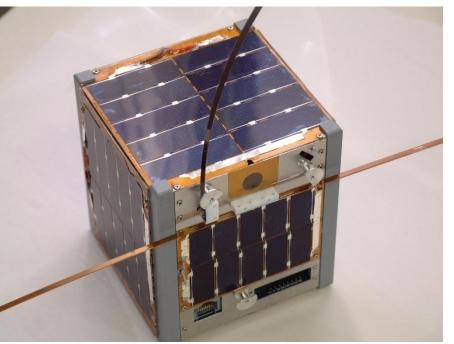
2017 Champion

University of Tokyo's rover achieved

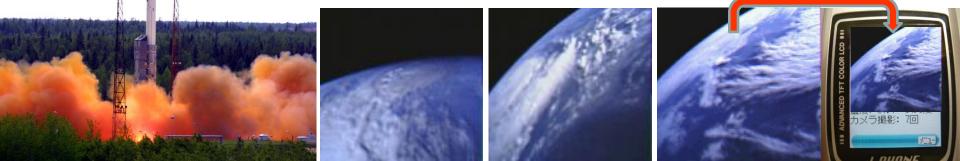
0m

to the target

20th Anniversary Gifts to AEROPAC (Sept 14, 2018)



CubeSat "XI-IV (Sai Four)"



<u>Mission</u>: Pico-bus technology demonstration in space, Camera experiment <u>Developer</u>: University of Tokyo <u>Launch</u>: ROCKOT (June 30, 2003) in Multiple Payload Piggyback Launch

Size	10x10x10[cm] CubeSat	
Weight	1 [kg]	
Attitude control	Passive stabilization with	
	permanent magnet and damper	
OBC	PIC16F877 x 3	
Communication	VHF/UHF (max 1200bps)	
	amateur frequency band	
Power	Si solar cells for 1.1 W	
Camera	640 x 480 CMOS	
Expected life time ??		

Captured Earth Images are Distribution to Mobile Phones

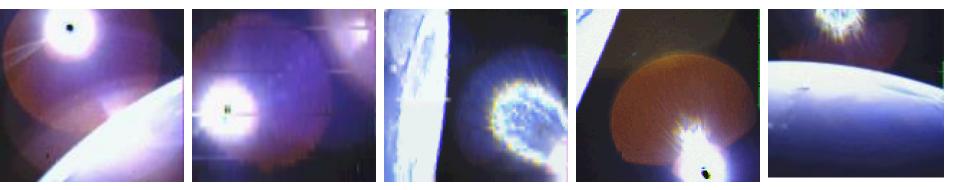
Basic Specifications of XI-IV

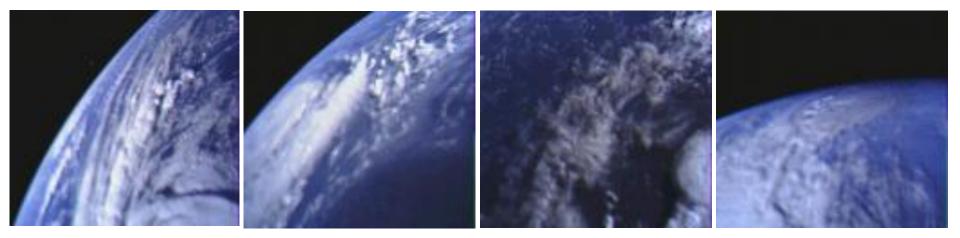
Structure	10cm cubic, 1kg, Aluminum A7075 body	
●C&DH		
OBC	PIC16F877 4MHz (Program memory 8k, RAM 368)	
Data Storage	EEPROM $32k + 224k$	
Communication System		
Downlink	430MHz band, FSK, 1200bps, 800mW	
Uplink	144MHz band, FSK, 1200bps	
Beacon	430MHz band, CW, 80mW	
• Power System		
Battery	Lithium-ion battery, 8 cells, 6.2AH	
Solar Cells	Monocrystal silicon, 60 cells, 1.1W(ave)	
Consumption	0.6W(ave), 5.4W(max)	
• Attitude Control	Passive stabilization using permanent magnet and damper	
Sensors	Voltage, Current, Temperature, CMOS camera	

Mission: Education, Pico-bus demonstration in space

Launch of the World First CubeSat (XI-IV, CUTE-1) by "ROCKOT"

はやぶさ2

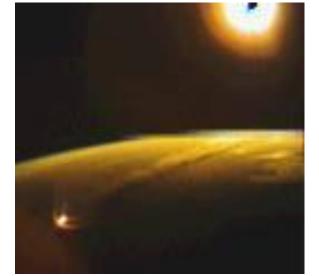

Hayabusa-2

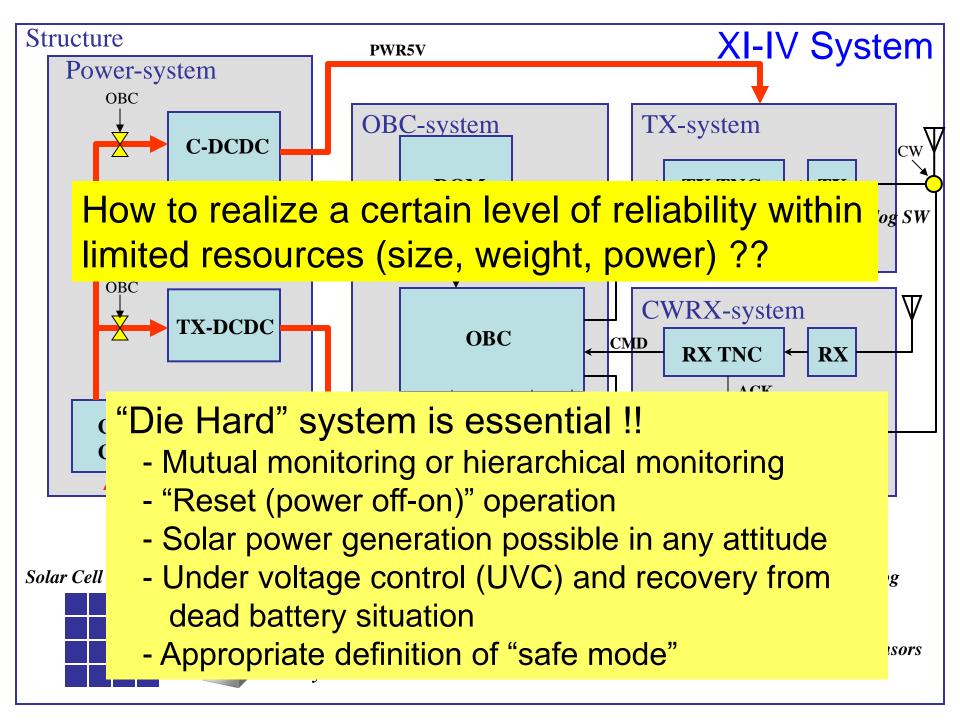

2003/06/30 18:15:26 (Ru

Contribution to human resource training was more than expected !

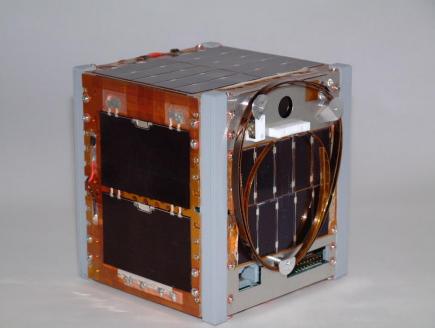
> CANON Satellite 2017.6.23

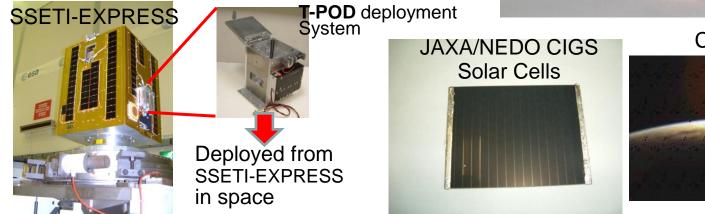
700+ pictures downlinked for 15 years


XI-IV is still perfectly working after 15 years in orbit Sepia color ! Recently Downlinked Photos Get older ?



Degradation of lens material by ultra-violet

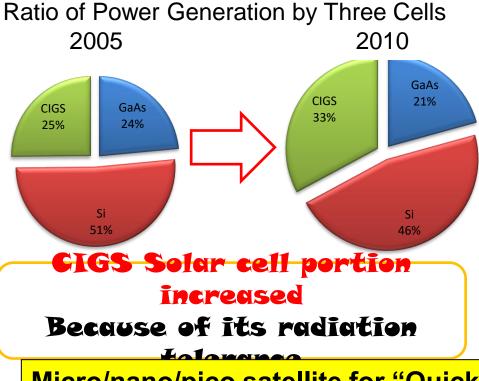



CubeSat "XI-V (Sai Five)"

Mission: CIGS solar cell demonstration, Advanced camera experiment <u>Developer</u>: University of Tokyo

Launch: COSMOS (October 27, 2005) deployed from "SSETI-EXPRESS"

Size	10x10x10[cm] CubeSat	
Weight	1 [kg]	
Attitude control	Passive stabilization with	
	permanent	
magnet and damper		
OBC	PIC16F877 x 3	
Communication	VHF/UHF (max 1200bps)	
	amateur frequency band	
Power	Si, GaAs, CIGS cells	
Camera	640 x 480 CMOS	
Mission life	> 5 years	



Captured Earth Images

CIGS Solar Cell Test in Space

- Three type solar cells on XI-V
 - ±Y,-Z →GaAs 16%
 - +X,+Z →Si 12%
 - -X →CIGS 10%

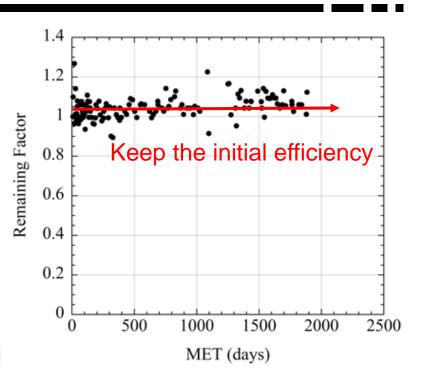


Fig. Flight data of current in CIGS solar cell module on Cubesat XI-V Kawakita,et.al., Space Experiments of Cu(In, Ga)Se₂ thin-film solar cells by Japanese small satellites

Micro/nano/pico satellite for "Quick test bench of new technoloies"

PRISM "Hitomi"

Antennae

<u>CMOS</u>

<u>Mission</u>: Earth Remote Sensing (20 m GSD, RGB) with Deployable Boom <u>Developer</u>: University of Tokyo

Launch: H-IIA (Jan 23, 2009) Piggyback with GOSAT (CO₂ monitoring sat)

Size	20x20x40[cm] in rocket	111111
	20x20x80[cm] in space	Lens
Weight	8.5 [kg]	
Attitude control	3-axis stabilization with	
	Sun, Magnet sensor, MEMS gyro magnetic torquers	001
OBC	SH2, H8 x 2, PIC x 2	
Communication	VHF/UHF (max 9600bps)	Flexible telescope
Mission life	> 2.5 years	

Mexico Seashore

US Desert

Kita-Kyushu (Japan)

Solar cell panels

Wide Angle Camera

Rivers with 40m width are recogniazed, which shows around 30m resolution was achieved

> 2009.4.17 Mexico

Educational Significances of CanSat/Micro/Nano/Pico-Satellite Projects

- Practical Training of Whole Cycle of Space Project
 - Mission conceptualization, satellite design, fabrication, ground test, modification, launch and operation
 - Know what is important and what is not.
- Importance for Engineering Education
 - Synthesis (not Analysis) of an really working system
 - Feedbacks from the real world to evaluate design, test, etc.
 - Learning from failures (while project cost is small)
- Education of Project Management
 - Four Managements: "Time, human resource, cost and risk"
 - Team work, conflict resolution, discussion, documentation
 - International cooperation, negotiation, mutual understanding

• Also contributions to other technology areas !